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Abstract
Genetic	monitoring	estimates	temporal	changes	in	population	parameters	from	mo-
lecular	marker	 information.	Most	populations	are	 complex	 in	 structure	and	change	
through	 time	 by	 expanding	 or	 contracting	 their	 geographic	 range,	 becoming	 frag-
mented	or	coalescing,	or	increasing	or	decreasing	density.	Traditional	approaches	to	
genetic	monitoring	rely	on	quantifying	temporal	shifts	of	specific	population	metrics—
heterozygosity,	 numbers	 of	 alleles,	 effective	 population	 size—or	measures	 of	 geo-
graphic	differentiation	such	as	FST.	However,	the	accuracy	and	precision	of	the	results	
can	be	heavily	influenced	by	the	type	of	genetic	marker	used	and	how	closely	they	
adhere	to	analytical	assumptions.	Care	must	be	taken	to	ensure	that	inferences	reflect	
actual	population	processes	rather	than	changing	molecular	techniques	or	incorrect	
assumptions	of	an	underlying	model	of	population	structure.	In	many	species	of	con-
servation	concern,	true	population	structure	is	unknown,	or	structure	might	shift	over	
time.	In	these	cases,	metrics	based	on	inappropriate	assumptions	of	population	struc-
ture	may	not	provide	quality	information	regarding	the	monitored	population.	Thus,	
we	need	an	inference	model	that	decouples	the	complex	elements	that	define	popula-
tion	structure	from	estimation	of	population	parameters	of	interest	and	reveals,	rather	
than	assumes,	 fine	details	of	population	 structure.	Encompassing	 a	broad	 range	of	
possible	population	structures	would	enable	comparable	inferences	across	biological	
systems,	even	in	the	face	of	range	expansion	or	contraction,	fragmentation,	or	changes	
in	density.	Currently,	the	best	candidate	is	the	spatial	Λ-	Fleming-	Viot	(SLFV)	model,	a	
spatially	explicit	 individually	based	coalescent	model	that	allows	 independent	 infer-
ence	of	two	of	the	most	important	elements	of	population	structure:	local	population	
density	and	local	dispersal.	We	support	increased	use	of	the	SLFV	model	for	genetic	
monitoring	by	highlighting	 its	benefits	over	traditional	approaches.	We	also	discuss	
necessary	future	directions	for	model	development	to	support	large	genomic	datasets	
informing	real-	world	management	and	conservation	issues.
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… the development of statistical procedures to uncover 
the demographic or selection history of a set of popula-
tions that best explains the observed genetic structure is 
certainly one of the most interesting challenges of popu-
lation genetics. —L. Excoffier (2007)

1  | TR ADITIONAL GENETIC MONITORING

Genetic	 monitoring	 is	 concerned	 with	 estimating	 temporal	
changes	in	population	demographic	processes	such	as	abundance,	
vital	 rates,	 and	 rates	 of	 exchange	 using	 information	 obtained	
from	 molecular	 markers	 (Schwartz,	 Luikart,	 &	 Waples,	 2007).	
With	the	evolution	of	low-	cost,	high-	throughput	next-	generation	
sequencing	methods,	 there	 is	 greater	 power	 to	 detect	 changes	
over	 time	or	 space.	This	 greatly	 facilitates	discovery	of	 popula-
tion	 structure	 and	makes	 genetic	 monitoring	 a	 valuable	 source	
of	 information	 for	 conservation	 policy	 decisions	 that	 would	 be	
difficult	to	obtain	otherwise	(Allendorf,	England,	Luikart,	Ritchie,	
&	 Ryman,	 2008;	 Duforet-	Frebourg	 &	 Blum,	 2013;	 Fromentin,	
Ernande,	 Fablet,	 &	 de	 Pontual,	 2009;	 Kardos,	 Taylor,	 Ellegren,	
Luikart,	&	Allendorf,	2016;	Laikre	et	al.,	2009;	Lankau,	Jørgensen,	
Harris,	&	Sih,	2011;	Leblois	et	al.,	2014;	Lloyd,	Campbell,	&	Neel,	
2013;	Mijangos,	Pacioni,	Spencer,	&	Craig,	2015;	Ovenden,	Berry,	
Welch,	 Buckworth,	 &	 Dichmont,	 2015;	 Paz-	Vinas	 et	al.,	 2013;	
Pierson	et	al.,	2016;	Rodrguez-	Trelles	&	Rodrguez,	2010;	Waples,	
Punt,	&	Cope,	2008).

However,	 because	 studies	 can	 span	 long	 time	 frames	and	also	
incorporate	results	of	other	studies,	care	must	be	taken	to	ensure	
that	 inferences	 reflect	 actual	 population	 processes	 rather	 than	
changing	 molecular	 techniques	 (Allendorf,	 2017;	 Charlesworth	 &	
Charlesworth,	2017)	or	 incorrect	model	 assumptions	 (Morin	et	al.,	
2010;	Peery	et	al.,	2012;	Samarasin,	Shuter,	Wright,	&	Rodd,	2017).	
Moreover,	populations	tend	to	be	complex	in	structure	and	change	
through	 time	by	 expanding	 or	 contracting	 their	 geographic	 range,	
becoming	 fragmented	 or	 coalescing,	 or	 increasing	 or	 decreasing	
density	(Hey	&	Machado,	2003).	Indeed,	all	of	these	can	be	occur-
ring	simultaneously	in	different	parts	of	a	single	species’	geographic	
range,	and	are	more	likely	occurring	in	species	of	conservation	con-
cern	(Whitlock	&	McCauley,	1999).	While	these	changes	are	often	in	
and	of	themselves	important	to	conservation	and	basic	population	
genetics,	they	can	also	cause	challenges	in	the	interpretation	of	anal-
yses	that	are	often	overlooked.

In	 traditional	 approaches	 to	 genetic	 monitoring,	 the	 predom-
inant	 approach	 quantifies	 patterns	 of	 variation	 or	 differentiation	
using	measures	 such	 as	heterozygosity,	 nucleotide	diversity,	 num-
bers	 of	 alleles	 and	 percentage	 of	 polymorphic	 loci,	 and	 estimates	
of	 effective	 population	 size,	 Ne	 (Aravanopoulos,	 2011;	 Excoffier,	
2007;	 Schwartz	 et	al.,	 2007;	 Tallmon	 et	al.,	 2010).	 The	 underlying	
assumption	is	that	temporal	changes	in	these	quantities	are	related	
to	demographic	parameters	of	conservation	concern	 (Hoffmann	&	
Willi,	 2008;	 Pertoldi,	 Bijlsma,	 &	 Loeschcke,	 2007;	 Schwartz	 et	al.,	
2007).	However,	these	relationships	can	be	affected	by	changes	in	

population	processes	(Schwartz	et	al.,	2007)	and	by	the	number	and	
type	of	genetic	markers	used	and	how	closely	they	adhere	to	the	an-
alytical	assumptions	(Narum	et	al.,	2008;	Smith	&	Seeb,	2008;	Smith	
et	al.,	 2007).	 Consequently,	 metric-	based	 approaches	 to	 genetic	
monitoring	or	to	quantifying	population	structure	can	be	misleading	
when	the	necessary	a	priori	assumptions	are	incorrect.

As	an	example,	one	of	the	most	commonly	used	measures	of	dif-
ferentiation	is	FST,	which	was	originally	defined	by	Wright	(1965)	as	
the	correlation	of	two	alleles	randomly	sampled	from	a	single	sub-
population	relative	to	the	correlation	of	two	alleles	randomly	sam-
pled	from	the	population	as	a	whole.	Under	some	conditions,	FST is 
also	related	to	the	inverse	of	the	migration	rate:	FST≈1∕(4Nem+1),	
where Nem	is	the	effective	number	of	reproducing	migrants	per	gen-
eration	(Wright,	1931).	This	relationship	has	led	to	widespread	use	of	
FST	as	an	indirect	measure	of	gene	flow	(Slatkin,	1985).

However,	this	relationship	is	based	on	Wright’s	island	model	of	
population	 structuring	 in	which	 all	members	 of	 a	 population	 have	
an	equal	probability	of	contributing	gametes	to	the	next	generation,	
generations	are	temporally	nonoverlapping,	all	members	of	a	popu-
lation	have	an	equal	and	constant	probability	of	migrating,	all	popu-
lations	are	the	same	constant	size,	and	populations	are	in	equilibrium	
with	respect	to	migration	and	genetic	drift	(Wright,	1931).	While	this	
model	has	proven	to	be	a	useful	simplification,	it	is	widely	recognized	
that	in	most	empirical	populations	these	assumptions	are	practically	
never	satisfied	(Waples,	1998;	Whitlock	&	McCauley,	1999).	In	fact,	
populations	of	conservation	concern	are	very	likely	to	demonstrate	
deviations	from	ideal	conditions.	These	populations	often	change	in	
size	rapidly	and	are	not	in	equilibrium	(Archer	et	al.,	2010;	Whitlock	
&	McCauley,	1999).	A	genetic	monitoring	study	of	such	species	that	
compares	values	of	FST	among	samples	from	different	time	points,	
each	of	which	can	be	out	of	equilibrium	to	differing	degrees,	is	likely	
to	be	misleading,	because	estimates	of	gene	flow	derived	from	FST 
integrate	 long-	term	 demographic	 effects	 (Neigel,	 2002).	 Strand,	
Milligan,	and	Pruitt	(1996)	also	demonstrated	that	FST	is	informative	
about	gene	flow	only	if	equilibrium	under	Wright’s	island	model	is	as-
sumed;	while	alternatively,	the	same	value	of	FST	is	informative	about	
the	time	since	population	divergence	only	if	a	strict	radiation	model	
of	subdivision	with	no	gene	flow	is	assumed.

Finally,	for	most	standard	tests	of	population	structure,	there	is	
a	requirement	that	the	samples	are	a	priori	partitioned	into	discrete	
populations.	 Population	 stratification	 schemes	 are	 necessary	 sim-
plifications	 of	 real	 population	 structure	 and	 are	 often	 hypotheses	
being	tested	with	the	data	at	hand.	Unless	independent	sources	of	
data	 exist	 for	 comparison	 (Charpentier	 et	al.,	 2012;	Musiani	 et	al.,	
2007),	it	can	be	difficult	to	assess	how	well	putative	stratifications	
reflect	 real	 populations.	However,	 even	when	 such	datasets	 exist,	
population	stratification	defined	by	genetic	data	often	differs	from	
stratification	defined	by,	for	example,	morphology	or	behavior,	be-
cause	they	are	influenced	differently	by	demography	and	selection	
(Ortego,	Garca-	Navas,	Noguerales,	&	Cordero,	2015;	Serrouya	et	al.,	
2012).	 In	the	absence	of	 independent	sources	of	data,	populations	
are	usually	defined	either	based	on	how	samples	have	been	collected	
or	as	perceived	centers	of	density	within	 the	species’	distribution,	
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both	of	which	can	be	biased	by	collection	methods	and	might	not	
reflect	actual	distribution	or	mating	patterns.

Thus,	most	uses	and	interpretations	of	gene	flow	from	estimates	
of	FST	are	accompanied	by	implicit	acceptance	of	a	particular	model	
of	population	structure,	and	their	relevance	depends	crucially	on	the	
appropriateness	of	the	model	used	to	relate	the	pattern-	based	quan-
tities	to	underlying	biological	processes	of	interest.	Further,	models	
of	population	 structure	and	models	of	population	 size	 change	can	
make	 identical	 predictions	 for	 observable	 genetic	 quantities,	 and	
therefore,	these	processes	cannot	be	distinguished	without	consid-
ering	 the	 full	distribution	of	genetic	variation	 (Mazet,	Rodrguez,	&	
Chikhi,	2015;	Mazet,	Rodríguez,	Grusea,	Boitard,	&	Chikhi,	2016).	In	
the	context	of	genetic	monitoring,	differentiating	these	is	of	crucial	
importance,	so	confounding	them	as	a	consequence	of	a	priori	as-
sumptions	is	a	serious	issue.	The	inherent	complexity	of	populations	
therefore	poses	a	nontrivial	problem	for	the	prospect	of	discovering	
population	structure,	and	presents	significant	challenges	to	the	de-
velopment	of	a	coherent	means	of	monitoring	populations	using	ge-
netic	information	gathered	over	any	reasonably	large	spatiotemporal	
extent	(Crandall,	Bininda-	Emonds,	Mace,	&	Wayne,	2000;	Excoffier,	
2007;	Segelbacher	et	al.,	2010).	Nevertheless,	this	is	a	problem	that	
must	be	addressed.	What	follows	is	our	view	of	the	path	forward.

2  | THEORY AND RE ALIT Y IN 
POPUL ATION GENETIC S

The	rich	theoretical	foundation	of	population	genetics	has	inspired	
numerous models to describe how genetic characteristics vary over 
space	and	time.	This	creates	a	challenge	for	discovering	population	
structure	 or	 guiding	 genetic	 monitoring,	 because	 choices	 among	
models	must	be	made	a	priori	and	available	models	might	not	cor-
respond	to	biological	 reality.	The	range	of	patterns	of	structure	 in	
natural	populations	can	be	viewed	as	a	triangular	space	described	by	
patchiness	and	individual	dispersal	distance	(Figure	1).	If	both	patch-
iness	and	dispersal	are	low,	individuals	are	relatively	uniformly	dis-
tributed.	As	patchiness	increases,	individuals	become	more	clumped	
into	discrete	populations.	As	dispersal	increases,	all	cases	converge	
to	 a	 single	 panmictic	 population.	 In	 reality,	 groups	 of	 individuals	
within	a	metapopulation	can	exist	at	multiple	locations	in	this	space.	
Certainly	for	the	discovery	of	population	structure	and	often	for	the	
purposes	of	genetic	monitoring,	we	are	 interested	 in	where	 in	this	
space	a	set	of	individuals	lies,	whether	the	location	is	shifting	over	
time,	and	if	so,	the	rate	of	change.	To	maximize	analytical	tractability,	
however,	traditional	population	genetics	models	typically	make	sim-
plifying	assumptions	about	life	histories	and	demographic	and	evo-
lutionary	processes.	This	limits	their	applicability	by	interpreting	the	
study	system	with	respect	to	a	small	subset	of	the	parameter	space.

In	the	most	widely	adopted	paradigm,	individuals	are	assumed	to	
assort	 themselves	 into	semi-	discrete	subpopulations,	within	which	
matings	occur	at	random.	The	two	most	commonly	used	models	of	
this	class	are	Wright’s	island	model,	introduced	in	Wright	(1931)	but	
not	named	until	Wright	(1943),	and	the	stepping-	stone	model	(Kimura	

&	Weiss,	 1964;	Weiss	&	Kimura,	 1965).	 These	models	 limit	 them-
selves	to	the	right	border	of	the	spatial	structure	triangle	(Figure	1).	
Here,	subpopulations	are	convenient,	and	often	necessary,	units	for	
subsequent	analyses	of	genetic	diversity	within	(heterozygosity,	al-
lelic	and	nucleotide	diversity)	and	among	(FST	and	related	measures)	
groups	of	individuals.	The	primary	parameters	governing	these	mod-
els	are	the	effective	size	of	each	subpopulation	(Ne)	and	the	rate	of	
migration	among	subpopulations	(in	the	island	model,	m is the sin-
gle	migration	rate	among	all	subpopulations;	 in	the	stepping-	stone	
model,	mj	is	the	migration	rate	among	subpopulations	separated	by	
j	steps	and	m∞	is	the	rate	of	long-	range	migration,	equivalent	to	m in 
the	island	model).	Spatial	heterogeneity	is	captured	mainly	through	
analysis	of	pairwise	combinations	of	connected,	discrete	populations	
(Rousset,	1997;	Slatkin,	1993),	or	by	the	estimation	of	migration	ma-
trices	(Beerli	&	Felsenstein,	2001).

In	 contrast,	 the	 most	 widely	 adopted	 alternative	 paradigm	 is	
Wright’s	IBD	model	(Wright,	1943,	1946),	which	focuses	on	individ-
uals	 assumed	 to	 be	 distributed	 continuously	 and	 uniformly	 across	
space.	These	models	limit	themselves	to	the	left	border	of	the	spatial	
structure	 triangle	 (Figure	1).	Here	 the	primary	parameters	govern-
ing	the	models	are	local	density	(d)	and	the	variance	of	parent–off-
spring	dispersal	distance	(σ2).	Together	these	define	the	concept	of	
neighborhood	size	as	the	geographic	area	within	which	most	matings	
take	place.	Spatial	heterogeneity	is	generally	not	considered	in	these	
models.

Some	attempts	to	bridge	these	two	paradigms	have	been	made,	
but	they	are	limited	to	identifying	special	cases	that	can	transform	
one	 into	 the	other.	 Stepping-	stone	models,	 for	 example,	 converge	

F IGURE  1 The	parameter	space	for	complex	populations.	
Populations	with	complex	spatial	structure	are	located	within	
a	parameter	space	defined	by	dimensions	corresponding	to	the	
degrees	of	patchiness	and	connectivity.	For	simplicity,	an	additional	
dimension	corresponding	to	the	local	population	density	is	not	
shown.	Increasing	connectivity	for	any	population	structure	
converges	to	the	same	outcome,	that	is,	panmixia,	so	the	feasible	
parameter	space	is	shown	as	triangular
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to	Wright’s	 island	model	 if	migration	 rates	except	 for	m∞ are zero 
(Kimura	&	Weiss,	1964;	Weiss	&	Kimura,	1965).	Conversely,	as	the	
number	of	subpopulations	increases	and	effective	size	of	each	be-
comes	 arbitrarily	 small,	 the	 stepping-	stone	model	 approaches	 the	
IBD	model.	Kimura	and	Weiss	(1964)	suggested	that	their	stepping-	
stone	model	could	be	analyzed	in	terms	of	IBD	by	replacing	m1 with 
σ2	and	by	substituting	the	effective	density	d(Ne/N)	for	Ne.

Importantly,	 neither	 dominant	 paradigm	 penetrates	 the	 inte-
rior	of	 the	spatial	structure	parameter	space	 (Figure	1),	which	cre-
ates	problems	when	models	based	on	those	paradigms	are	used	to	
discover	population	structure	or	are	applied	to	genetic	monitoring.	
Although	some	real-	world	species	fall	neatly	into	one	or	the	other	of	
these	paradigms,	many	others	exist	somewhere	in	the	interior	space	
of	the	triangle.	In	some	species,	individuals	are	neither	randomly	dis-
tributed	across	the	landscape	nor	neatly	clumped	into	semi-	discrete	
subpopulations,	while	for	others	individuals	are	arrayed	in	different	
spatial	patterns	in	different	areas	and/or	at	different	times.	And	for	
many	other	 species,	 connectivity	depends	 strongly	on	 features	of	
the	habitat	(which	might	change	at	different	spatiotemporal	scales)	
rather	than	being	a	simple	function	of	distance	as	implied	by	the	IBD	
model.

3  | INDIVIDUALLY BA SED L ANDSC APE 
GENETIC S MODEL S

In	 general,	 the	 area	within	 the	 spatial	 structure	 triangle	 (Figure	1)	
can	 be	 considered	 the	 domain	 of	 landscape	 genetics,	 which	 inte-
grates	 population	 genetics,	 landscape	 ecology,	 and	 spatial	 statis-
tics	 to	 identify	 landscape	 and	 environmental	 factors	 that	 affect	
genetic	 and	 genomic	 variation	 (Milligan,	 2017;	 Segelbacher	 et	al.,	
2010).	Landscape	genetics,	a	term	coined	in	2003	(Manel,	Schwartz,	
Luikart,	&	Taberlet,	2003)	to	describe	increasingly	spatially	explicit	
advances	 in	 population	 genetics	 (Dyer,	 2015a),	 has	 had	 a	 strong	
focus	on	the	flow	of	genetic	 information	across	the	landscape	and	
hence	population	structure.	Further,	it	is	well	recognized	that	model	
output	and	inference	in	landscape	genetics	is	heavily	influenced	by	
and	dependent	on	the	scale	and	resolution	(i.e.,	how	finely	resolved	
are	measures	of	ecological	differences)	of	ecological	processes	(e.g.,	
dispersal	and	demography)	that	influence	gene	flow	and	population	
structure	(Cushman	&	Landguth,	2010;	Galpern	&	Manseau,	2013;	
Hand,	Cushman,	Landguth,	&	Lucotch,	2014;	Wasserman,	Cushman,	
Schwartz,	&	Wallin,	2010).

Most	landscape	genetic	studies	rely	strongly	on	the	dichotomy	
of	 individual	 versus	 population-	based	models	 for	 inference	 (Dyer,	
2015a;	 Storfer,	 Murphy,	 Spear,	 Holderegger,	 &	Waits,	 2010).	 The	
approach	of	using	pattern-	based	measures	such	as	FST and correlat-
ing	them	with	spatial	and/or	environmental	factors,	has	long	domi-
nated	landscape	genetics	(Waits	&	Storfer,	2016).	These	approaches	
require	a	priori	 stratification	of	 samples	 into	putative	populations.	
Newer	 approaches	 like	 population	 graph	 approaches	 (Dyer,	 2007,	
2015b;	Dyer	&	Nason,	2004;	Murphy,	Dyer,	&	Cushman,	2016)	have	
been	largely	applied	in	population-	based	frameworks,	often	where	

sampling	locations,	not	genetically	discrete	populations,	define	the	
vertices	 of	 the	 graph.	 Individual-	based	 analyses	 in	 landscape	 ge-
netics	 can	 help	 overcome	 problems	with	 predefining	 populations,	
and	many	landscape	genetic	statistics	can	be	adapted	to	individual-	
based	 measures	 of	 genetic	 differentiation.	 However,	 individual-	
based	 studies	 often	 yield	 thousands	 of	 pairwise	 values,	making	 it	
difficult	to	make	biologically	relevant	inferences	of	genetic	structure	
(Kierepka	 &	 Latch,	 2015).	 Furthermore,	 popular	 tests	 of	 associa-
tion	 between	matrices	 of	 pairwise	 distances,	 for	 example,	Mantel	
tests,	 suffer	 from	 statistical	 errors	 (Graves,	 Beier,	 &	 Royle,	 2012;	
Kierepka	&	Latch,	2015)	and	are	easily	susceptible	to	sampling	biases	
(Kierepka	&	Latch,	2015;	Oyler-	McCance,	Fedy,	&	Landguth,	2013;	
Schwartz	&	McKelvey,	2009).	Thus,	despite	its	promise,	much	of	the	
core	of	 landscape	genetics	must	be	 improved	before	 it	 is	 ready	to	
tackle	the	challenges	of	long-	term	genetic	monitoring	and	discovery	
of	population	structure.

Improvement	 of	 landscape	 genetics	 models	 for	 genetic	 moni-
toring	might	start	 from	either	of	 two	points.	The	 first	 is	 the	 family	
of	 spatially	 explicit,	 individually	 based	 ancestry	 clustering	 models,	
which includes geneland	 (Guillot,	Estoup,	Mortier,	&	Cosson,	2005),	
TESS	 (Chen,	Durand,	Forbes,	&	François,	2007),	BAPS	(Corander	&	
Marttinen,	2006),	and	POPS	(Jay,	Durand,	François,	&	Blum,	2015),	
many	 of	 which	 are	 derived	 from	 the	 nonspatial	 structure model 
(Falush,	Stephens,	&	Pritchard,	2003;	Pritchard,	Stephens,	&	Donnelly,	
2000).	 All	 of	 these	models	 interpret	 the	 observed	multilocus	 gen-
otypes	 as	 samples	 from	 putative	 populations,	 which	 are	 inferred	
during	the	modeling	process.	As	a	consequence,	they	are	limited	to	
the	 right	 border	 of	 the	 spatial	 parameter	 space	 (Figure	1).	 In	 addi-
tion,	a	range	of	covariates	are	often	included.	For	example,	structure 
(Pritchard	et	al.,	2000)	allows	prior	distributions	to	be	influenced	by	
the	sampled	spatial	location	of	each	individual,	while	geneland	(Guillot	
et	al.,	2005),	TESS	(Chen	et	al.,	2007),	spatial	BAPS	(Corander,	Sirén,	
&	Arjas,	2008),	and	POPS	(Jay	et	al.,	2015)	explicitly	include	the	sam-
pled	spatial	location	of	each	individual	in	the	model.	In	addition,	POPS	
(Jay	et	al.,	2015)	explicitly	 includes	environmental	as	well	as	spatial	
information.	However,	none	of	these	models	explicitly	includes	gene	
flow,	despite	it	being	one	of	the	most	important	genetic	mechanisms	
influencing	variability	and	 local	adaptation	(Holderegger	&	Wagner,	
2008).	Thus,	despite	their	promise,	these	models	also	need	improve-
ment	if	they	are	to	be	used	to	handle	the	complexities	of	long-	term	
genetic	monitoring.	Specific	areas	of	improvement	include	the	addi-
tion	of	more	biologically	relevant	mechanisms	such	as	gene	flow	in	
ways	that	acknowledge	the	spatial	heterogeneity	required	for	genetic	
monitoring	and	discovery	of	population	structure	(Milligan,	2017).

The	second	family	contains	the	 individually	based	explicitly	ge-
nealogical	models	of	ancestry,	which	are	based	upon	the	coalescent	
(Kingman,	1982).	This	includes	a	large	set	of	models	that	infer,	gen-
erally	 from	DNA	 sequence	 data,	 such	 quantities	 as	 effective	 pop-
ulation	size	and	growth	rate,	gene	flow,	and	population	divergence	
(Kuhner,	 2008).	 Unlike	 most	 of	 the	 models	 in	 the	 first	 category,	
these	are	not	truly	spatially	explicit;	at	best	individuals	are	gathered	
into	predefined	populations	 for	 analysis	using	a	 structured	coales-
cent	 (Hudson,	 1990;	 Notohara,	 1990).	 Furthermore,	 many	 of	 the	
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parameters	inferred	in	these	models	are	averages	across	the	entire	
sample.	Thus,	for	example,	spatially	dependent	density	or	gene	flow	
cannot	 be	 ascertained,	 both	 of	which	 are	 important	 for	 long-	term	
genetic	monitoring	or	for	discovery	of	population	structure.	As	a	re-
sult,	while	offering	much	promise,	this	set	is	likewise	not	immediately	
suitable.

The	 main	 approaches	 to	 population	 and	 landscape	 genetics	
provide	 strong	 foundations	 for	genetic	monitoring.	However,	 they	
generally	require	making	a	priori	assumptions	about	quantities	that	
are	 the	 subject	 of	 inference	 and	 the	 models	 exhibit	 many	 prob-
lems	when	applied	to	the	challenge	of	genetic	monitoring	(Table	1).	
Consequently,	 a	 new	 look	 at	 genetic	monitoring	 and	 discovery	 of	
population	structure	is	required.

4  | MODEL S FOR GENETIC MONITORING 
AND DISCOVERY OF POPUL ATION 
STRUC TURE

A	more	general	approach	to	population	genetic	analysis	must	place	
the	 focal	 system	within	 the	 spatial	 structure	 triangle	 (Figure	1)	 as	
a	 natural	 outcome	of	 the	 analysis,	 not	 start	with	 a	 priori	 assump-
tions	about	its	location	within	the	parameter	space.	Additionally,	the	
model	would	directly	quantify	the	full	distribution	of	actual	popula-
tion	or	 evolutionary	 processes	 of	 interest	 as	 best	 as	 possible,	 de-
coupling	these	parameters	from	the	elements	that	define	population	
structure	(Excoffier,	2007).	In	particular,	this	model	would:

•	 Encompass	 a	 broad	 range	 of	 possible	 population	 structures,	 so	
that	inferences	made	would	be	comparable	across	different	geo-
graphic	scales	and	types	of	biological	systems,

•	 Utilize	spatial	information,

•	 Simultaneously	quantify	processes	 influencing	population	struc-
ture	and	connectivity,	and	assess	changes	in	both	over	time,

•	 Allow	for	spatial	heterogeneity	in	model	parameters,
•	 Directly	 estimate	 parameters	 of	 interest	 and	 their	 uncertainty,	
while	not	being	confounded	by	range	expansion	or	contraction,	
fragmentation,	or	changes	in	density,	and

•	 Be	compatible	with	multiple	types	of	genetic	data,	allowing	it	to	
be	informed	by	legacy	microsatellite	or	potentially	allozyme	data	
sets,	next-generation	sequencing	data,	or	data	generated	by	fu-
ture technologies.

The	basic	observations	for	a	general	analysis	with	this	hypothetical	
model	would	be	multilocus	genotypes,	multilocus	 sequences,	or	 full	
genome	sequences	of	 individuals,	their	geographic	 locations,	and	 in-
formation	on	covariates	that	might	influence	local	density,	movement,	
and selection. The model should serve as a bridge between the two 
main	paradigms	of	individual	neighborhood	and	island/stepping-	stone	
models	 (i.e.,	 the	 left	and	 right	borders	of	 the	spatial	 structure	 trian-
gle	(Figure	1)),	and	encompass	these	models	as	boundary	conditions.	
Preliminary	analyses	using	the	model	might	indicate	that	a	given	sys-
tem	fits	comfortably	onto	either	border,	 justifying	the	use	of	one	or	
the	other	set	of	standard	analytical	regimes.	However,	most	empirical	
cases	are	more	likely	to	lie	in	the	interior,	so	the	model	could	also	give	
an	indication	of	the	appropriateness	of	measures	deriving	from	one	or	
the	other	of	the	main	paradigms.

5  | SPATIAL Λ-  FLEMING - VIOT MODEL

Currently,	the	only	model	with	immediate	potential	to	address	most	
of	the	requirements	for	long-	term	genetic	monitoring	is	the	spatial	
Λ-	Fleming-	Viot	 (SLFV)	 model	 (Barton,	 Etheridge,	 &	 Véber,	 2013;	

TABLE  1 Current	problems	in	the	implementation	of	genetic	monitoring	models	and	important	qualities	of	a	genetic	monitoring	model

Primary problem Examples of potential consequences
Improvements needed in 
genetic monitoring models

Current	metrics	heavily	influenced	by	scale	and	
vary	greatly	depending	on	the	scale	used

Multi-	scale	studies	show	that	landscape	effects	are	
evident	at	one	scale	and	absent	at	another	(Balkenhol	
et	al.,	2014;	Millete	&	Keyghobadi,	2015)

Scale-	independent	
quantification	of	local	
population	structure	and	
connectivity

Spatial	heterogeneity	in	
model	parameters

Many	genetic	metric	models	require	assignment	of	
individuals	to	predetermined	groups

Potential	for	erroneous	groups	from	clustering	algorithms	
(Frantz,	Cellina,	Krier,	Schley,	&	Burke,	2009;	Latch,	
Dharmarajan,	Glaubitz,	&	Rhodes,	2006;	Schwartz	&	
McKelvey,	2009)

No	a	priori	grouping

Genetic	metrics	are	often	divorced	from	the	
underlying	genetic	process,	leading	to	poor	
estimation	of	the	process	itself

Inaccurate	estimates	of	migration	rates,	especially	at	low	
values	of	FST	(Allendorf,	Luikart,	&	Aitken,	2013)

Directly	incorporate	known	
population	genetics	
mechanismsViolation	of	assumptions	can	greatly	impact	estimates	of	

effective	population	size	(Neel	et	al.,	2013)

Genetic	metrics	can	be	sensitive	to	the	marker	
type	used	and	could	therefore	change	temporally	
based solely on the methodology

Different	spatial	genetic	structures	between	marker	types	
(Bradbury	et	al.,	2015)

Technology	independent

Limited	applicability	across	studies	for	wide-	ranging	
species	(de	Groot	et	al.,	2016)
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Guindon,	 Guo,	 &	 Welch,	 2016;	 Joseph,	 Hickerson,	 &	 Alvarado-	
Serrano,	2016;	Kelleher,	Barton,	&	Etheridge,	2013).	The	SLFV	is	a	
spatially	explicit	extension	of	the	Λ-	Fleming–Viot	model	which	is	it-
self	an	extension	of	the	Fleming–Viot	model	(Fleming	&	Viot,	1979).	
Equivalently,	it	is	a	spatially	explicit	version	of	the	Λ-	coalescent	which	
is	 an	extension	of	Kingman’s	 coalescent	 (Kingman,	1982;	Tellier	&	
Lemaire,	2014).	Specifically,	 coalescence	 in	 the	SLFV	model	 is	not	
limited	to	two	lineages,	and	individuals	can	be	distributed	arbitrarily	
across	space,	avoiding	the	restriction	in	classical	island	and	stepping-	
stone	 models	 of	 discrete	 population	 boundaries.	 As	 a	 result,	 the	
SLFV	model	permits	the	simultaneous,	yet	independent,	estimation	
of	local	population	density	and	local	dispersal	rates,	two	key	param-
eters	of	population	processes	integral	to	genetic	monitoring	studies.	
The	mathematical	background	for	the	SLFV	model	was	introduced	
in	Etheridge	(2008)	and	is	well	described	in	Barton,	Etheridge,	and	
Véber	(2010),	Barton	et	al.	(2013),	Berestycki,	Etheridge,	and	Véber	
(2013),	and	Véber	and	Wakolbinger	(2015).	Extensions	to	the	model	
including	selection,	mutation,	recombination,	and	skewed	reproduc-
tive	success	are	thoroughly	covered	by	Dawson	and	Greven	(2014),	
Etheridge	 and	 Véber	 (2012),	 Etheridge,	 Freeman,	 and	 Straulino	
(2017),	and	Montano	(2016).	Efficient	implementations	of	the	selec-
tively	neutral,	 spatially	homogeneous	SLFV	model,	with	and	with-
out	recombination,	are	described	in	Kelleher	et	al.	(2013),	Kelleher,	
Etheridge,	and	Barton	(2014)	and	Kelleher,	Etheridge,	and	McVean	
(2016).	In	what	follows,	we	introduce	informally	this	simple	model,	

then	present	the	steps	involved	in	a	more	mathematically	rigorous	
form	to	illustrate	explicitly	how	the	restrictive	assumptions	can	be	
relaxed	to	obtain	a	model	with	the	desired	characteristics	outlined	
in	the	previous	section.

In	its	simplest	form,	the	SLFV	model	constructs	coalescent	ge-
nealogies	of	subgroups	of	haploid	 individuals	through	 iterations	of	
reproduction	 and	movement	 events	 backwards	 in	 time	 (Figure	2).	
The	sequence	begins	with	a	set	of	individuals,	arbitrarily	distributed	
across	a	continuous	landscape	(Figure	2a),	each	carrying	their	empir-
ical	genotypic	data	(although	they	can	also	optionally	be	associated	
with	other	data	such	as	sex,	demographic	or	reproductive	state).	In	
the	first	step,	a	neighborhood	center	(x)	and	radius	(r)	are	randomly	
selected	(Figure	2b).	All	coalescent	events	will	be	limited	to	individ-
uals within this neighborhood. A new location within the neighbor-
hood	 is	 randomly	selected	for	 the	ancestor	 (a)	and	 its	genotype	 is	
selected	from	the	distribution	in	the	neighborhood	associated	with	
that	 location	 (Figure	2c).	 Existing	 individuals	 within	 the	 neighbor-
hood	are	then	randomly	selected	to	be	descendants	of	the	new	an-
cestor.	Finally,	as	for	the	Moran	(1958)	model,	the	descendants	are	
removed,	 having	been	 replaced	by	 the	 ancestor	 (Figure	2d),	 and	 a	
new	 iteration	begins,	with	 iterations	 continuing	until	 only	 a	 single	
ancestor remains.

As	outlined	below,	 the	 individuals	need	not	be	haploid.	Sexual	
reproduction	can	be	accommodated	by	selecting	more	 than	a	 sin-
gle	ancestor.	Note	that	small-	scale,	for	example,	single	generation,	

F IGURE  2  Illustration	of	one	iteration	
of	the	SLFV	model.	(a)	Initial	condition	
involving	individuals	at	their	empirical	
sampling	locations	with	two	haplotypes	
(white	and	gray),	(b)	placement	of	a	
random	neighborhood	(circle)	defined	
by	its	center	(x)	and	radius	(r),	(c)	random	
placement	of	a	putative	ancestor	(square)	
and	coalescence	of	ancestry	of	randomly	
selected	descendants,	and	(d)	distribution	
of	remaining	individuals	after	removal	of	
the descendants

(a) (b)

x
r
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reproduction	 events	 will	 necessarily	 involve	 two	 ancestors,	 but	
large-	scale	 events,	 that	 is,	 those	 with	 long	 intervals	 or	 covering	
large	areas,	can	involve	more	than	two	because	multiple	generations	
might	have	intervened	(Kelleher	et	al.,	2013).

The	steps	in	this	process	can	be	formalized	to	illustrate	the	gen-
eralizations	that	are	possible.	For	clarity	of	exposition	we	will	con-
sider	the	single	locus	model,	because	it	captures	the	spatially	explicit	
nature	that	 is	crucial	for	genetic	monitoring;	multilocus	extensions	
are	 straightforward	 (Kelleher	et	al.,	 2013,	2014,	2016).	Consider	 a	
sample	of	n,	not	necessarily	haploid,	individuals,	each	from	a	known	
location x within a d-	dimensional	landscape	L	and	with	a	known	state	
s	(e.g.,	genotype,	sex,	etc.).	Thus,	each	individual	i	can	be	represented	
by the quantities i,	xi,	and	si.	Let	C(t)	be	the	set	of	individuals	extant	at	
time t;	this	can	change	at	discrete	points	in	time	as	reproductive	or	
movement	events	occur.	Initially,	C={(i,xi, si)∀i}. Iterate through the 
following	steps	until	C	contains	only	a	single	individual,	the	ancestor	
of	the	entire	sample.

1. Generate	 an	 event	 at	 a	 location,	 which	 will	 involve	 a	 mixture	
of	 reproduction	 and	 movement.	 To	 do	 so,	 sample	 a	 spatial	
probability	distribution	E(x)	from	a	family	of	spatial	distributions	
across	 the	 landscape	 L.	 In	 the	 simplest	 case	 (Kelleher	 et	al.,	
2013),	 the	 family	 of	 distributions	 E(x)	 for	 a	 d + 1 dimensional 
landscape	 L	 is	 composed	 of	 uniform	 distributions	 within	 d-
spheres	of	radius	r	centered	at	points	e.	Alternatively,	a	Gaussian	
distribution	 for	 the	 selection	 has	 been	 used	 (Guindon	 et	al.,	
2016).	 Nonhomogeneity	 in	 the	 landscape	 can	 be	 incorporated	
with	 different	 families	 of	 E(x),	 which	 might,	 for	 example,	 de-
pend	 on	 the	 distribution	 of	 habitats,	 land	 use	 patterns,	 other	
environmental	 characteristics,	 or	 the	 state	 (genetic	 or	 demo-
graphic)	 of	 the	 individuals.

2. Select	a	set	C′	of	 individuals	based	upon	the	spatial	distribution	
E(x).	For	every	individual	j in C,	select	it	with	a	probability	of	E(xj,sj). 
This will yield a set C′	 containing	 zero	or	more	 individuals,	 ran-
domly	 selected	 according	 to	 the	 spatial	 distribution	 associated	
with	the	event	and	their	state.	In	the	case	of	no	mutation,	all	indi-
viduals in C′	will	have	 the	same	state,	but	 this	 restriction	 is	not	
necessary.	 Depending	 on	 the	 number	 of	 individuals	 in	C′,	 this	
event	either	has	no	effect	or	involves	a	mixture	of	reproduction	
and movement. 
(a)		If	C′	is	empty,	no	individuals	are	affected	by	the	event	and	C is 
unchanged.	Construct	a	new	event.

(b)		If	C′	contains	at	least	one	individual,	the	event	is	potentially	a	
mixture	of	 reproduction	and	movement	 (and	possibly	muta-
tion).	Sample	a	set	of	individuals,	which	will	replace	those	in	C′,	 
from	the	distribution	R(x|C′).	Some	or	all	of	these	 individuals	
may	be	ancestors	of	(some	of)	those	in	C′; the remainder are 
individuals in C′	that	have	simply	moved.	Thus,	the	distribution	
R(x|C′)	determines	the	mixture	of	reproduction	and	movement	
that	occurs	in	the	event.	For	sexual	reproduction,	R(x|C′) can 
generate	locations	for	more	than	one	ancestor,	and	even	for	
more	than	two	in	the	case	of	large-scale	events.	In	this	case,	
ancestry must be distributed across the selected individuals; 

Kelleher	et	al.	(2016)	compares	the	efficiency	of	alternative	al-
gorithms	for	accomplishing	this.	In	the	simplest	cases,	R(x|C′) 
is	uniform	across	the	d-sphere	defined	by	E(x)	(Kelleher	et	al.,	
2013)	or	may	only	depend	on	the	distance	between	 individ-
uals	 (Guindon	 et	al.,	 2016).	 However,	 more	 complex	 distri-
butions	 can	 depend	on	 the	 locations	 of	 individuals	 in	C′,	 on	
environmental characteristics across L,	or	on	individual	states.	
If	mutation	is	possible,	sample	the	state	of	these	replacement	
individuals	from	the	distribution	S(s|C′).	Finally,	remove	all	indi-
viduals in C′	from	C	and	replace	them	with	the	newly	sampled	
ones.

Clearly	 the	 SLFV	model	 is	 very	 general.	 It	 is	 applicable	 to	 1-		 or	
2-	dimensional	 habitats,	 and	 the	 landscape	 can	 be	 homogeneous	 or	
heterogeneous	in	any	way.	The	suitable	locations	for	individuals	can	be	
continuously	distributed	(either	uniformly	or	not)	across	the	landscape,	
can	be	patchily	distributed,	can	be	limited	to	discrete	positions,	or	can	
be	a	complex	mixture	of	these.	The	flexibility	of	the	SLFV	model	en-
ables	the	spatial	structure	to	emerge	from	the	analysis	rather	than	be	
imposed	a	priori.	Developing	software	that	reflects	the	range	of	appli-
cability	of	the	SLFV	model	remains	an	open	challenge	that	is	crucial	to	
the	advancement	of	genetic	monitoring	as	well	as	population	genetics.

The	 selectively	 neutral,	 spatially	 homogeneous	 SLFV	model	 is	
dependent	on	several	parameters,	the	two	most	important	of	which	
govern how R(x|C′),	the	spatial	distribution	of	new	ancestors	and	co-
alescent	events,	reflects	local	population	density	and	local	dispersal	
rate.	This	means	that	the	SLFV	model	 is	directly	based	on	biologi-
cal	processes	of	 known	 importance	 to	 the	genetic	 composition	of	
populations,	a	feature	critical	for	genetic	monitoring	and	discovery	
of	population	 structure.	 For	example,	 it	 explicitly	models	 the	pro-
cesses	of	 reproduction	and	 local	movement	 (Figure	2c),	permitting	
direct	 inference	 of	 the	 spatial	 distribution	 of	 relevant	 population	
processes.	This	 is	 in	contrast	 to	summary	pattern-	based	measures	
such as FST that can be related to biological mechanisms such as gene 
flow	only	if	a	population	fits	a	particular	model.

The	 data	 required	 for	 the	 SLFV	model	 are	 those	 already	 gen-
erally	 obtained	 for	 genetic	 monitoring:	 individual-	specific	 genetic	
data,	either	multilocus	genotypes	or	DNA	sequences,	and	individual-	
specific	 geographic	 locations.	 Additionally,	 spatially	 or	 temporally	
heterogeneous	versions	of	the	model	could	use	spatial	or	temporal	
covariates,	such	as	habitat	characteristics,	to	parameterize	the	local	
population	density	and	dispersal	parameters.	Analogous	parameter-
izations	are	central	to	the	success	of	landscape	genetics	(Balkenhol,	
Cushman,	Storfer,	&	Waits,	2016;	Manel	et	al.,	2003),	which	seeks	
to	relate	landscape	or	environmental	characteristics	to,	for	example,	
dispersal	through	surfaces	that	quantify	flow	of	individuals	through	
the	landscape	(McRae,	2006).

Two	 applications	 of	 the	 SLFV	model	 illustrate	 both	 its	 power	
and	 the	 importance	of	 relaxing	 the	assumptions	 incorporated	 into	
existing	 software.	 Joseph	 et	al.	 (2016)	 developed	 an	 approximate	
Bayesian	 computation	 (ABC)	 pipeline	 based	 upon	 the	 selectively	
neutral,	 spatially	 homogeneous	 SLFV	model	 (Kelleher	 et	al.,	 2013,	
2014).	 The	 pipeline	was	 used	 to	 validate	 the	 estimation	 of	 neigh-
borhood	 size	 from	 simulated	 data	 and	 subsequently	 to	 estimate	



1156  |     MILLIGAN et AL.

both	neighborhood	size	and	dispersal	radius	from	empirical	data	on	
Berkheya cuneata	(Asteraceae)	from	South	Africa.	In	their	model,	dis-
persal	radius	R	was	the	maximum	distance	individuals	could	disperse,	
and	neighborhood	size	was	the	number	of	individuals	within	the	area	
of	an	event	of	radius	R.	For	validation,	100,000	datasets	were	gen-
erated	for	eight	individuals	sampled	at	10	unlinked	loci.	Each	dataset	
was	composed	of	the	genealogy	generated	by	the	SLFV	model	and	
1	kb	 sequences	 simulated	 along	 each	 genealogy.	 Data	 generation	
took	 2	days	 on	 a	 12-	core	 computer.	 Subsequently,	 the	 posterior	
distribution	of	neighborhood	size	was	calculated	using	ABC	based	
upon	 100	 replicate	 leave-	one-	out	 cross-	validations;	 regression	 of	
the estimated neighborhood size on the actual neighborhood size 
had R2 = 0.87.

The	empirical	analysis	of	Berkheya cuneata	used	a	total	of	33	in-
dividuals	with	 known	 locations	 and	 sequence	 data	 at	 one	 nuclear	
and	two	plastid	loci	(Joseph	et	al.,	2016).	The	same	pipeline	imple-
menting	the	selectively	neutral,	spatially	homogeneous	SLFV	model	
was	used	to	generate	100,472	datasets;	rejection	ABC	was	used	to	
sample	from	the	posterior	distributions	of	both	neighborhood	size	
and	dispersal	distance.	The	median	estimates	of	neighborhood	size	
and	dispersal	distance	were	502.50	(95%	HPDI	56.03–962.00)	and	
7.33	km	(HPDI	2.44–9.86	km),	respectively.	The	process	of	generat-
ing	datasets	took	36	days	to	complete.

This	study	illustrates	several	important	points	regarding	practi-
cal	use	of	the	SLFV	model.	First,	the	two	most	biologically	important	
parameters,	neighborhood	size	and	dispersal	distance,	are	 identifi-
able;	that	is,	they	can	be	estimated	separately	using	the	SLFV	model.	
Second,	it	is	possible	to	obtain	useful	estimates	even	from	relatively	
small	datasets	composed	of	no	more	than	dozens	of	 individuals	or	
handfuls	of	loci.	Third,	there	is	room	for	improved	computational	ef-
ficiency	to	accommodate	larger	datasets.	Finally,	adding	spatial	het-
erogeneity	in	the	form	of	known	resistance	surfaces	or	the	like,	as	
is	often	done	in	landscape	genetics	(McRae,	2006;	Spear,	Cushman,	
&	McRae,	 2016),	will	 increase	 realism	without	 adding	parameters;	
inferring	 properties	 of	 resistance	 surfaces	 adds	 no	more	 parame-
ters	than	the	equivalent	multivariate	regression	or	similar	landscape	
genetic	 analysis	would.	 Thus,	while	 the	 existing	 pipeline	 (Kelleher	
et	al.,	2013,	2014)	does	not	accommodate	that	flexibility,	a	spatially	
heterogeneous	SLFV	model	is	both	feasible	and	likely	to	be	compu-
tationally tractable.

A	 second	 example	 using	 the	 selectively	 neutral,	 spatially	 ho-
mogeneous	SLFV	model	reinforces	these	points	and	illustrates	ad-
ditional	ones.	Guindon	et	al.	 (2016)	also	validated	the	SLFV	model	
with	simulations	and	applied	it	to	data,	in	this	case	from	influenza	A	
virus	(H1N1	subtype)	for	the	flu	seasons	from	2009	to	2014.	Instead	
of	using	ABC	as	did	Joseph	et	al.	(2016),	Guindon	et	al.	(2016)	gen-
erated	samples	 from	the	posterior	distributions	of	 the	parameters	
with	the	Metropolis-	Hastings	MCMC	algorithm.	For	validation,	300	
simulated	 datasets	 of	 5,000	 individuals	were	 generated	 using	 the	
SLFV	model	 to	 generate	genealogies	 and	 the	Kimura	2-	parameter	
model	 (Kimura,	1980)	 to	generate	nucleotide	sequences	given	 the	
genealogies.	Effective	population	density	(d)	and	dispersal	intensity	
(σ2)	(Wright,	1946)	were	estimated	using	the	SLFV	model	based	upon	

a	 sample	 of	 50	 individuals	 sampled	 at	 either	 two	 or	 ten	 different	
sites.	 Additionally,	 parameter	 estimates	 were	 obtained	 using	 the	
structured	 coalescent	 (Hudson,	 1990;	 Notohara,	 1990)	 under	 the	
assumption	of	either	two	or	ten	discrete	populations.	Estimates	from	
the	structured	coalescent	were	upwardly	biased	to	a	 large	degree,	
though	much	 less	 so	 for	 ten	 than	 for	 two	 populations.	 Estimates	
from	the	SLFV	model	were	much	better,	although	the	precision	de-
clined	with	larger	values	of	dispersal	intensity.	These	computations	
took	100	hr	to	complete	on	a	computer	with	2.7–2.8	GHz	CPUs.

The	 empirical	 analysis	 of	 influenza	 (Guindon	 et	al.,	 2016)	 was	
based	upon	two	biological	replicates,	each	involving	one	sequence	
of	the	NA	segment	of	the	influenza	A	virus	(H1N1	subtype)	per	48	
contiguous	state	of	the	U.S.A.	from	each	of	the	five	flu	seasons	from	
2009	 to	 2014.	 Each	 dataset	 yielded	 an	 estimate	 of	 the	 posterior	
distributions	 for	neighborhood	size	Ns∝σ2d	 and	dispersal	 radius	σ 
(Wright,	1946).	Comparison	of	the	five	distributions	for	these	two	
parameters	revealed	that	the	two	biological	replicates	yielded	simi-
lar	distributions,	an	indication	of	consistency	despite	moderate	sam-
ple	size.	Further,	the	2009–2010	flu	season	was	different	from	the	
other	four;	it	was	characterized	by	a	smaller	neighborhood	size	and	
a	 larger	 dispersal	 radius.	 This	 observation	 indicates	 limited	 infec-
tion	rates	and	broader	climatic	tolerance,	which	 is	consistent	with	
the	 known	 history	 (longer	 duration	 and	milder	 incidence)	 of	 that	
epidemic.

This	study	reinforces	the	point	that	neighborhood	size	and	dis-
persal	 rates	 can	 be	 estimated	 separately	 using	 the	 SLFV	model.	
Distinguishing	between	them	is	 important,	especially	 in	the	case	
of	 genetic	monitoring	where	 either	 or	 both	might	 shift	 (as	 they	
did	 with	 influenza)	 through	 time.	 Detecting	 those	 shifts	 may	 in	
fact	be	a	major	 reason	 for	undertaking	a	monitoring	program.	 It	
also	reinforces	the	point	that	useful	estimates	can	be	obtained	for	
typical	samples	using	a	reasonable	amount	of	computation.	Thus,	
the	SLFV	model	can	be	developed	into	a	practical	approach	to	ge-
netic	monitoring.	It	may	also	serve	the	task	much	better	than	other	
methods,	such	as	those	based	upon	FST or the structured coales-
cent,	that	impose	a	priori	assumptions	upon	the	spatial	structure	
of	the	populations	under	study.

Although	analyses	using	the	SLFV	model	to	date	(Guindon	et	al.,	
2016;	Joseph	et	al.,	2016)	have	assumed	spatial	homogeneity	in	both	
neighborhood	size	and	dispersal,	there	is	no	inherent	reason	not	to	
allow	spatial	heterogeneity,	 just	 as	 it	 is	 routinely	 included	 in	 land-
scape	genetics	analysis	(Balkenhol	et	al.,	2016).	For	example,	given	
information	on	the	spatial	layout	of	distinct	habitat	types,	one	could	
estimate	 different	 densities	 or	 dispersal	 rates	 for	 each	 habitat.	 In	
turn,	those	parameters	could	be	the	focus	of	genetic	monitoring	to	
detect	changes	in	habitat-	specific	density	or	dispersal,	 information	
that	would	be	of	great	value	to	a	monitoring	program.	It	would	also	
reveal	valuable	information	on	the	basic	biology	of	the	species	under	
study.	Importantly,	differences	among	habitats	(or	other	spatially	de-
fined	factors)	would	emerge	naturally	from	the	analysis	if	they	exist	
rather	 than	 be	 imposed	 at	 the	 outset	 by	 selection	 of	 the	 analysis	
framework.	 Of	 course,	 as	 with	 landscape	 genetics	 models,	 SLFV	
models	with	 too	many	 parameters	will	 be	 impossible	 to	 estimate.	
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How	many	and	which	parameters	can	be	estimated	remains	an	open	
question,	and	software	implementations	of	more	complex,	and	pos-
sibly	biologically	realistic,	models	are	required	to	investigate	this.

6  | POTENTIAL SHORTCOMINGS OF 
CURRENT IMPLEMENTATIONS OF THE SLF V 
MODEL

Current	implementations	of	the	SLFV	model	(Guindon	et	al.,	2016;	
Kelleher	et	al.,	2013,	2016)	include	restriction	to	selectively	neutral	
markers	 and	 spatially	 homogeneous	 landscapes.	 Inefficiencies	 of	
implementation	or	 limited	 sets	 of	MCMC	operators	might	 also	 be	
shortcomings	leading	to	analyses	taking	longer	to	complete	or	being	
limited	in	scope.	These	are	purely	technical	limitations	related	to	the	
early	 stage	 of	 development	 of	 the	 SLFV	model,	 and	 can	 be	 over-
come	by	improvements	in	software	design	coupled	with	additional	
investigation	of	model	performance.	Given	that	coalescent	models	
have	recently	been	extended	to	genome-	scale	data	for	phylogenetic	
analysis	(Bansal,	Burleigh,	&	Eulenstein,	2010;	Boussau	et	al.,	2013;	
Jenkins,	Fearnhead,	&	Song,	2015;	Kumar,	Hallström,	&	Janke,	2013),	
it	is	likely	that	the	same	will	be	true	for	the	SLFV	model.

A	 feature	of	 the	SLFV	model	 as	 currently	 implemented	 is	 that	
no	distinction,	other	than	location,	is	made	among	individuals	with	
respect	to	their	likelihood	of	birth;	in	the	backward	in	time	version	
of	the	model	described	above,	the	probability	distribution	E(x)	that	
selects	individuals	influenced	by	an	event	depends	only	on	location.	
Greater	biological	realism	could	be	incorporated	into	the	model	by	
allowing E(x)	 to	depend	on,	 for	example,	 the	demographic	state	of	
individuals	or	their	genotype.	These	states	need	not	even	be	static;	
they	could	be	projected	 through	 time	 from	one	event	 to	 the	next	
much	as	phylogenetic	analysis	projects	state	change	along	lineages.	
Further,	these	projections	could	incorporate	structured	population	
models	(Caswell,	2000)	in	a	natural	way.

Like	the	Moran	 (1958)	model,	 the	SLFV	model	applies	 to	over-
lapping	 generations,	 as	 reproductive	 events	 are	 not	 synchronized	
across	 the	 population	 in	 any	 way	 other	 than	 by	 the	 geographic	
scale	of	each	event.	 Interestingly,	 this	feature	contrasts	with	most	
other	 models,	 which	 have	 the	 opposite	 limitation	 of	 applying	 to	
nonoverlapping	generations.	As	many	biological	 life	 cycles	 involve	
overlapping	generations,	this	gives	the	SLFV	model	greater	practical	
relevance than discrete generation models.

Despite	these	limitations	of	implementation,	the	SLFV	model	is	
already	useful	for	separate	estimation	of	such	biologically	meaning-
ful	parameters	as	local	population	density	and	dispersal,	which	are	
confounded	in	other	models.	Current	software	implementations	as-
sume	that	individuals	are	distributed	uniformly	in	space,	so	variation	
in	 density	must	 be	discovered	by	modeling	different	 spatial	 parti-
tions.	However,	as	outlined	above	this	is	a	technical	limitation	of	the	
current	implementations	not	of	the	SLFV	model	itself.	One	priority,	
therefore,	is	to	generalize	the	implementations	to	match	the	poten-
tial	of	the	model	so	that	population	structure	need	not	be	imposed	
in	advance	but	can	be	obtained	as	a	direct	outcome	of	analysis.	This	

would	enable	discovery	of	the	nature	of	populations	or	monitoring	
their	state	over	time	or	space	in	ways	that	are	impossible	if	the	struc-
ture	of	the	populations	must	be	assumed	a	priori.	For	this	reason,	the	
SLFV	model	offers	distinct	advantages	both	for	the	advancement	of	
our	understanding	of	population	genetics	and	our	application	of	it	to	
genetic monitoring.

7  | A LONG - TERM GENETIC MONITORING 
STR ATEGY

What	would	a	long-	term	genetic	monitoring	strategy	based	upon	spa-
tially	explicit	coalescent	models,	 such	as	 the	spatial	Λ-	Fleming-	Viot	
model,	look	like?	From	the	data	acquisition	viewpoint,	such	a	monitor-
ing	strategy	would	largely	resemble	any	other.	Geo-	referenced	sam-
ples	of	individuals	would	be	distributed	across	the	species	range,	and	
sampling	would	be	repeated	to	create	a	time	series.	Environmental	
and	landscape	data	would	be	obtained	as	well	to	provide	information	
on	potential	covariates.	As	with	all	similar	studies,	the	goal	of	sam-
pling	is	to	ensure	that	each	individual	is	equally	likely	to	be	sampled,	
that	individuals	are	sampled	independently,	and	that	the	environmen-
tal	and	landscape	covariates	are	spatially	representative.

From	 the	 data	 analysis	 viewpoint,	 however,	 such	 a	 monitoring	
strategy	 would	 look	 quite	 different	 from	 common	 practice.	 First,	
different	 types	 of	 genetic	 data,	 for	 example,	 DNA	 sequences	 and	
multilocus	 genotypes	 would	 be	 analyzed	 simultaneously	 in	 the	
same	model.	In	principle,	this	has	long	been	possible	for	coalescent-	
based	methods	 (Beerli	&	Palczewski,	 2010;	Bouckaert	 et	al.,	 2014;	
Drummond	&	Rambaut,	2007);	however,	in	practice	different	types	
of	 data,	 for	 example,	 single	 nucleotide	 polymorphisms	 (SNPs)	 and	
microsatellites,	are	analyzed	separately.	For	genetic	monitoring,	the	
focus	is	on	basic	properties	of	the	populations,	for	example,	spatially	
dependent	density	and	dispersal,	not	on	data	type-	specific	estimates	
(Milligan,	Leebens-	Mack,	&	Strand,	1994).	Joint	analysis	of	the	data	is	
likely	to	be	better	than	independent	analyses	of	partitions,	in	much	
the	same	way	that	joint	analysis	of	gene	trees	leads	to	better	infer-
ence	of	species	trees	in	phylogenetics	(Liu,	Xi,	Wu,	Davis,	&	Edwards,	
2015).

Second,	 increasing	emphasis	would	be	placed	on	 the	posterior	
distributions	 of	 parameters,	 as	 opposed	 to	 their	 point	 estimates.	
Much	as	Guindon	et	al.	(2016)	were	able	to	recognize	similarities	and	
differences	among	distributions	inferred	for	a	sequence	of	influenza	
outbreaks,	 genetic	monitoring	must	 recognize	 similarities	 and	 dif-
ferences	in	parameters	across	spatial	and	temporal	dimensions.	This	
can	only	be	done	accurately	if	 information	on	the	full	distributions	
is available.

Third,	the	same	model	would	be	used	for	temporal	comparisons	
to	identify	biological,	not	methodological,	shifts.	Not	only	would	this	
make	comparisons	more	meaningful,	it	would	also	enable	direct	and	
quantitative	analysis	of	changes.	The	current	practice	of	using	dif-
ferent	data	and	models	over	time,	coupled	with	ad	hoc	interpreta-
tions	of	the	differences,	does	not	 lend	 itself	to	reliable	monitoring	
protocols.
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Finally,	 the	 nature	 of	 the	models	 used	must	 of	 course	 be	 im-
proved	so	that	they	will	handle	these	demands.	They	must	cover	a	
full	range	of	data	types	and	include	a	full	range	of	biological	mecha-
nisms	to	achieve	this.	Consequently,	advances	in	genetic	monitoring	
depend	crucially	on	advances	 in	 the	models	and	analyses	 that	are	
possible.	 The	 rapid	 technological	 advances	 in	 data	 acquisition,	 for	
example,	the	increasing	accessibility	of	genome-	scale	data,	make	it	
easy	to	forget	that	the	data	are	meaningless	without	suitable	anal-
yses.	 For	 long-	term	genetic	monitoring,	 those	 analyses	must	 yield	
comparable	 information,	 and	 they	must	 do	 so	 in	 the	 face	 of	 both	
dynamically	changing	populations	and	changing	types	of	data.

8  | CONCLUSIONS

In	conservation	biology,	there	has	been	a	movement	toward	bet-
ter	utilizing	genomic	data	and	information	about	adaptive	genetic	
markers	to	improve	our	understanding	of	evolutionary	processes,	
rates	 of	 dispersal,	 local	 adaptation,	 genotype-	by-	environment	
interactions,	 and	 other	 important	 factors	 influencing	 population	
structure	 at	 multiple	 scales	 (Allendorf,	 Hohenlohe,	 &	 Luikart,	
2010;	Garner	et	al.,	2016).	By	enabling	process-	based,	rather	than	
pattern-	based,	approaches,	models	such	as	the	spatial	Λ-	Fleming-	
Viot	 model	 will	 allow	 the	 quantitative,	 spatiotemporal	 compari-
sons	required	for	rigorous	and	informative	genetic	monitoring	and	
for	discovering	the	structure	of	natural	populations.	They	will	also	
allow	adaptive	incorporation	of	additional	monitoring	effort	to	ef-
ficiently	 reduce	 uncertainties	 and	 iteratively	 improve	 inferences	
about	 temporal	 changes	 in	monitored	 systems.	 Finally,	 they	will	
allow	 integration	of	 new	 samples,	 including	historical	 ones	 from	
archival	collections,	 into	a	monitoring	effort,	 thereby	greatly	ex-
panding	 the	 time	 scale	 over	which	monitoring	 can	meaningfully	
occur.	 As	 a	 consequence	 of	 the	 parallel	 development	 of	 these	
models	and	genetics	technology,	genetic	monitoring	stands	poised	
to	provide	a	rich	source	of	information	for	more	effectively	guiding	
real-	time	management	decisions,	monitoring	the	impact	of	human	
activities	including	changes	in	policy,	and	informing	us	about	fun-
damental	biological	processes	such	as	responses	to	global	climate	
change.
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